Homework Due: November 7

Name: __

Spelling Pattern and List for the week:

All students will be responsible for the first 15 words, unless highlighted otherwise.

<table>
<thead>
<tr>
<th>10</th>
<th>Two-syllable words: one consonant between two vowels.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. The words on this pattern list all have two syllables.</td>
</tr>
<tr>
<td></td>
<td>2. The first syllable is an open syllable (the vowel is not followed by a consonant).</td>
</tr>
<tr>
<td></td>
<td>3. Open syllable vowels are usually long.</td>
</tr>
</tbody>
</table>

11	1. rival
	2. agent
	3. tyrant
	4. rodent
	5. focus
	6. vacate
	7. tirade
	8. ozone
	9. sequel
	10. spoken

12	11. important
	12. raspberry
	13. manual
	14. eighty
	15. honestly
	16. Canada
	17. province
	18. mountain
	19. resource
	20. transportation
Big Brains

Elephants have big brains. The brain of an adult elephant measures about 5,500 cubic centimeters, compared to 1,350 for a person. Since elephants also have big bodies, their large brains are not surprising. But an elephant brain is larger than what you would predict from just its body weight. What does an elephant do with its big brain?

Elephants use their large brains to remember many things. Elephants live for a long time, and during their long lives, they have many experiences, leading to many memories. Female elephants typically remember the “voices” of several hundred elephants. They also remember watering holes that have water in dry times. Their good memories help them survive.

Elephants are skilled tool users. The older female elephants, called matriarchs, teach tool-use to the young. Elephants pick up and throw rocks and logs. Elephants use sticks to remove bugs from their bodies, and branches to swat away flies. Researchers have seen elephants make tools by shortening a long branch or stripping away excess vegetation.

Finally, some recent research suggests that elephants are self-aware. In the mirror test, scientists place smudges on an elephant’s forehead and observe what the elephant does when it sees itself in a mirror. Just as a person would, the elephant tries to rub off the dirt.

1 This selection is mostly about
 A how large elephant brains are.
 B how elephants use their brains.
 C why memory is useful to an elephant.
 D what tools elephants use.

2 Which generalization is supported by the selection?
 A Female elephants are smarter than male elephants.
 B Elephants are the smartest of all wild animals.
 C Elephants are the only animals that use tools.
 D Elephants are quite intelligent.
3 Why would an elephant shorten a branch?
A to make it easier to throw
B to make it into a tool
C to make it the right length for building
D to teach a young elephant how to carry it

4 What is the author’s purpose in this selection?
A to convince readers to protect elephants
B to entertain readers with a funny story about elephants
C to inform readers about elephant intelligence
D to tell readers how the author feels about elephants

5 How do elephants respond to the mirror test?
A They try to improve what they see.
B They look behind the mirror for an elephant.
C They call out to the other elephant.
D They show no reaction to the mirror.

6 A good memory helps the elephant
A wash away dirt.
B make useful tools.
C survive during drought.
D fight with natural enemies.
Sister Songs

After weeks of waiting, Janie was camping in the mountains with her best friend, Anna, and Anna’s family, which included Anna’s twin sister, Bella. Bella was not in Janie and Anna’s sixth-grade class at school. She was in a different class. The twins’ parents thought that being separated would help them develop independence. But now, here they were, the whole Henry family, plus Janie, huddled around a snapping fire in the middle of the dark woods. Mr. Henry had just told a scary story, and no one was feeling very independent.

Mrs. Henry asked the twins if they remembered the song they had sung so much as toddlers. “At the time, it drove us crazy, but they finally grew out of it,” Mrs. Henry said, sighing. “That was very fortunate.”

“We made that song up,” Bella announced.

“You learned it in nursery school,” her mother said. “You were only three!”

“No,” Anna said with a hint of pride. “We composed it ourselves.” On a tentative note, she sang the opening lines, then Bella joined in, and their girlish voices, pure and haunting in the firelight, hung in the air like the perfume of an unseen flower.

Anna leaned into Bella as they sang, and leaned away from Janie, over whom an enormous sadness suddenly washed. Suddenly Janie felt that one was not the loneliest number; three could be much lonelier. She wished she had her own twin sister. Having a younger brother was rarely fun; she and Bud had never made up a song together.

When the song ended, the woods went oddly quiet. Anna leaned back into Janie and looped one arm around her shoulder. “I’ll teach you our song,” she whispered, “and we can sing it all week.”

7 What is the main conflict in this story?
A The twins need to become more independent.
B The family disagrees about the source of the song.
C The twins’ closeness makes Janie feel alone.
D Bella thinks her class is better than Anna and Janie’s.

8 The setting adds to the mood of the story by being
A beautiful.
B natural.
C enormous.
D isolated.
9 Which of the following quotations is part of the climax?
A “That was very fortunate.”
B “I’ll teach you our song.”
C “We composed it ourselves.”
D “You learned it in nursery school."

10 Which of the following best shows Anna’s generosity?
A She invited Janie to go camping with the family.
B She agreed with her sister about the song.
C She put her arm around Janie’s shoulder.
D She made up a song with her sister.

11 Read the following sentences from “Sister Songs.”

“At the time, it drove us crazy, but they finally grew out of it,”
Mrs. Henry said, sighing. “That was very fortunate.”

Why was Mrs. Henry relieved?
A The twins sang the song too much.
B The twins were very immature for their age.
C The song kept the twins from being independent.
D The song was too hard for the rest of the family to learn.

12 Which of the following would make the best new title for this selection?
A “Nursery School”
B “The Loneliest Number”
C “Camping in the Mountains”
D “The Henry Family and Janie”
An appositive is a word or group of words that follows a noun and identifies or explains the noun. Commas are used to set off most appositives from the rest of the sentence.

Read each sentence. If the sentence contains an appositive, write A on the line and circle the appositive word or phrase. If the sentence does not contain an appositive, write N.

1. The Great Serum Race began in Nome, a city in Alaska. _____
2. The city had several cases of diphtheria, a fast-spreading disease. _____
3. In 1925, Nome had a population of about 1,400 people. _____
4. The cure for diphtheria, antitoxin serum, was not available. _____
5. The nearest supply was in Anchorage, 1,000 miles away. _____
6. Bill Shannon, the first musher to carry the serum, left Anchorage on January 27. _____
7. Bill had a team of nine malamutes. _____
8. Togo, a proven leader, waited anxiously to begin his part of the race. _____
9. Togo’s leader was Leonhard, the famed Norwegian musher. _____
10. Balto, another famous lead dog, finally finished the race and delivered the serum. _____
Read each pair of sentences. Then combine them using an appositive word or phrase. Be sure to write the new sentence using a comma or commas to set off the appositive.

1. The serum was located in Anchorage. Anchorage is a city in southern Alaska.

2. Alfred John heard the roar of the steam engine. He was a five-year-old Athabaskan Indian.

3. Alfred wore his warmest shoes. They were caribou legskin boots.

4. Bill's dogsled team raced toward Tolovana. Tolovana was the first relay stop some fifty-two miles away.

5. Bill enjoyed his regular job. His regular job was transporting mail and freight with his dog team.
• Use commas to set off most appositives from the rest of the sentence.

Add commas where they are needed to set off appositives in the following sentences.

1. Leonhard wore his warmest clothing a squirrel skin parka, sealskin pants, and reindeer mukluks.
2. He was going to intercept the serum at Nulato a village-halfway between Nome and Nenana.
3. Dog teams always wore bells a warning to pedestrians as they ran through town.
4. Togo led the team down Front Street the town's main road.
5. Edgar Kalland a twenty-year-old Athabaskan Indian mail driver waited anxiously.
6. He waited outside the Tolovana Roadhouse a favorite rest stop for dog-sled teams.
7. Edgar soon took off for Manly Hot Springs a thirty-one-mile trip to the next relay point.
8. The dogs had to wade through slush a dangerously wet snow that was caused by a crack in the ice.
9. Musher Charlie Evans faced the coldest temperatures sixty-four degrees below zero.
10. Balto a true hero finally saved the day.

At Home: Have the student write five sentences that contain appositives.
Mixed-Number Practice

1. Answer the following questions about the rectangle shown at the right. Include units in your answers.

 a. What is the perimeter? ________

 b. If you were to trim this rectangle so that it was a square measuring 1\(\frac{1}{4}\) inches on a side, how much would you cut from the base? ________ from the height? ________

2. Michael bought 1 peck of Empire apples, 1 peck of Golden Delicious apples, a \(\frac{1}{2}\)-bushel of Red Delicious apples, and 1\(\frac{1}{2}\) bushels of McIntosh apples.

 a. How many bushels of apples did he buy in all?

 b. Michael estimates that he can make about 12 quarts of applesauce per bushel of apples. About how many quarts of applesauce can he make from the apples he bought?

Add or subtract. Show your work and estimates on the back of the page.

3. \(2\frac{1}{3} + 1\frac{2}{3} = \) ________

4. \(6\frac{1}{3} - 5\frac{2}{3} = \) ________

5. \(4\frac{1}{2} + \frac{2}{3} = \) ________

6. \(6 - 5\frac{4}{9} = \) ________

7. \(4\frac{3}{6} - 2\frac{3}{4} = \) ________

8. \(3\frac{1}{4} + 2\frac{3}{4} = \) ________

9. \(9 - 2\frac{2}{5} = \) ________

10. \(4\frac{1}{4} - 2\frac{5}{6} = \) ________

11. \(5\frac{1}{4} - 2\frac{7}{10} = \) ________

Practice

Solve mentally.

12. \(\frac{1}{2} + 4\frac{2}{3} + 2\frac{1}{2} + 5\frac{1}{3} = \) ________

13. \(4.5 + 3.4 + 7.5 + 2.5 = \) ________

14. \($2.35 + $9.60 + $8.05 + $1.99 = \) ________

15. \($5\frac{5}{8} + 3\frac{3}{4} + 2\frac{1}{4} + 8\frac{3}{8} = \) ________
Fraction Multiplication

Use the fraction multiplication algorithm below to solve the following problems.

\[
\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}
\]

1. \(\frac{3}{5} \times \frac{2}{4} = \)
2. \(\frac{3}{7} \times \frac{5}{9} = \)
3. \(5 \times \frac{3}{8} = \)

4. \(\frac{11}{12} \times \frac{1}{4} = \)
5. \(\frac{5}{6} \times \frac{7}{8} = \)
6. \(\frac{3}{10} \times \frac{7}{10} = \)

7. \(\frac{2}{5} \times \frac{7}{9} = \)
8. \(\frac{4}{7} \times 8 = \)
9. \(12 \times \frac{9}{11} = \)

10. South High beat North High in basketball, scoring \(\frac{4}{5}\) of the total points. Rachel scored \(\frac{1}{4}\) of South High’s points. What fraction of the total points did Rachel score?

11. Josh was making raisin muffins for a party. He needed to triple the recipe, which called for \(\frac{3}{4}\) cup raisins. How many cups of raisins did he need?

12. At Long Middle School, \(\frac{7}{8}\) of the sixth graders live within 1 mile of the school. About \(\frac{2}{3}\) of those sixth graders walk to school. None who live a mile or more away walk to school. About what fraction of the sixth graders walk to school?

13. a. For Calista’s 12th birthday party, her mom will order pizza. \(\frac{3}{4}\) of the girls invited like vegetables on their pizza. However, \(\frac{1}{3}\) of those girls won’t eat green peppers. What fraction of all the girls will eat a green-pepper-and-onion pizza?

b. If 12 girls are at the party (including Calista), how many girls will not eat a green-pepper-and-onion pizza?

Practice

Solve.

14. \(12 \times 0.75 = \)
15. \(0.2 \times 0.5 = \)
16. \(0.4 \times 0.25 = \)
Multiply each mixed number as a fraction.

1. \(1\frac{4}{5}\)
2. \(2\frac{6}{6}\)
3. \(5\frac{2}{3}\)
4. \(3\frac{1}{2}\)

Rename each fraction as a mixed number or whole number.

5. \(\frac{12}{4}\)
6. \(\frac{33}{8}\)
7. \(\frac{15}{6}\)
8. \(\frac{20}{3}\)

Multiply. Write each answer in simplest form. If possible, write answers as mixed numbers or whole numbers.

9. \(5 \times \frac{3}{5}\) =
10. \(2\frac{1}{3} \times 1\frac{4}{5}\) =

11. \(\frac{5}{6} \times 2\frac{1}{2}\) =
12. \(1\frac{1}{6} \times 4\frac{2}{3}\) =

13. \(3\frac{3}{4} \times 2\frac{1}{8}\) =
14. \(7\frac{1}{2} \times 2\frac{2}{3}\) =

Practice

Solve mentally.

15. \(8 \times 3.5\) =
16. \(12 \times 5.25\) =
17. \(4.2 \times 15\) =
Fill in the missing numbers below. Then shade each large square to represent all three of the equivalent numbers below it. Each large square is worth 1.

1. \(\frac{4}{5} = \frac{8}{10} = \quad \%
\)

2. \(\frac{6}{8} = \frac{30}{100} = \quad \%
\)

3. \(\frac{30}{100} = \quad \%
\)

Rename the fractions as decimals.

4. \(\frac{7}{14} = \quad \)

5. \(\frac{6}{8} = \quad \)

6. \(\frac{5}{20} = \quad \)

7. \(\frac{4}{5} = \quad \)

Rename the decimals as fractions in simplest form.

8. \(0.4 = \quad \)

9. \(0.10 = \quad \)

10. \(0.68 = \quad \)

11. \(0.25 = \quad \)

Rename the fractions as percents.

12. \(\frac{25}{50} = \quad \)

13. \(\frac{6}{24} = \quad \)

14. \(\frac{18}{30} = \quad \)

15. \(\frac{19}{20} = \quad \)

Rename the percents as fractions in simplest form.

16. \(50\% = \frac{50}{100} = \quad \)

17. \(40\% = \frac{40}{100} = \quad \)

18. \(100\% = \quad \)

19. \(180\% = \frac{180}{100} = \quad \)

Experiment

People often don’t realize that fractions, decimals, and percents are numbers. To them, numbers are whole numbers like 1, 5, or 100. Try the following experiment: Ask several adults to name four numbers between 1 and 10. Then ask several children. Keep a record of all responses on the back of this page. How many named fractions, decimals, or percents? Now ask the same people to name four numbers between 1 and 3. Report your findings.